Quietly tell you

没有什么技术是一篇文档解决不了的,如果有,那就两篇。

Java从NTP授时服务器上获得真实时间的一个工厂类

场景

因为业务需要,准备把File服务迁到阿里云的OSS上去,前段时间将代码改好以后,今天进测试发生了一个莫名其妙的问题,仔细看日志发现是由于测试服务器的时间和阿里云的时间不对应导致的安全校验失败。

这就尴尬了,因为测试需要,测试服务器的时间是经常调整的,不能保证与阿里云时间保持一致,于是决定修改一下OSS SDK的源代码,让他从网络上获取真实时间,这样就不受服务器时间调整影响了,经测试完美。

下面是获取真实时间的工具类,以备不时之需。


package com.aliyun.oss;

import java.io.IOException;
import java.io.InterruptedIOException;
import java.net.ConnectException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.net.NoRouteToHostException;
import java.net.UnknownHostException;
import java.text.DecimalFormat;
import java.text.SimpleDateFormat;
import java.util.Date;

/**
 * 网络时间工厂类
 * @author 郭胜凯
 * @createTime 2017年12月16日下午6:06:23
 * @email guoshengkai@shoujinwang.com
 */
public class InternetDateFactory {
	
	/**
	 * 本地与阿里云授时中心时间差
	 */
	private static final long INTERNET_DISPARITY = computeTimeDifference();
	
	public static void main(String[] args) {
		long internetTime = System.currentTimeMillis() - INTERNET_DISPARITY;
		System.out.println(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date(internetTime)));
	}
	
	/**
	 * 获得当前真正的时间(不受服务器设置影响)
	 * @return
	 * 		java.util.Date.Date
	 */
	public static Date getRealDate() {
		return new Date(System.currentTimeMillis() - INTERNET_DISPARITY);
	}
	
	/**
	 * 获得当前真正的DateTime值(不受服务器设置影响)
	 * @return
	 */
	public static long getRealTime() {
		return System.currentTimeMillis() - INTERNET_DISPARITY;
	}
	
	/**
	 * 获得当前服务器设置的时间与真实时间的时间差
	 * @return
	 * 		毫秒,正数表示服务器与真正时间超前n毫秒,反之代表落后n毫秒
	 */
	public static long getTimeDifference() {
		return INTERNET_DISPARITY;
	}
	
	/**
	 * 计算本地时间与网络时间的时间差,本地 - 网络
	 * @return
	 */
	private static long computeTimeDifference() {
		//获得网络时间
		int retry = 2;
		int port = 123;
		int timeout = 3000;
		InetAddress ipv4Addr = null;
		try {
			ipv4Addr = InetAddress.getByName("ntp1.aliyun.com");//更多NTP时间服务器参考附注  
		}
		catch (UnknownHostException e1) {
			e1.printStackTrace();
		}
		int serviceStatus = -1;
		DatagramSocket socket = null;
		long responseTime = -1;
		try {
			socket = new DatagramSocket();
			socket.setSoTimeout(timeout); // will force the  
			// InterruptedIOException  
			
			for (int attempts = 0; attempts <= retry && serviceStatus != 1; attempts++) {
				try {
					// Send NTP request  
					//  
					byte[] data = new NtpMessage().toByteArray();
					DatagramPacket outgoing = new DatagramPacket(data, data.length, ipv4Addr, port);
					long sentTime = System.currentTimeMillis();
					socket.send(outgoing);
					
					// Get NTP Response  
					//  
					// byte[] buffer = new byte[512];  
					DatagramPacket incoming = new DatagramPacket(data, data.length);
					socket.receive(incoming);
					responseTime = System.currentTimeMillis() - sentTime;
					double destinationTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
					//这里要加2208988800,是因为获得到的时间是格林尼治时间,所以要变成东八区的时间,否则会与与北京时间有8小时的时差  
					
					// Validate NTP Response  
					// IOException thrown if packet does not decode as expected.  
					NtpMessage msg = new NtpMessage(incoming.getData());
					double localClockOffset = ((msg.receiveTimestamp - msg.originateTimestamp) + (msg.transmitTimestamp - destinationTimestamp)) / 2;
					
					System.out.println("poll: valid NTP request received the local clock offset is " + localClockOffset + ", responseTime= " + responseTime + "ms");
					System.out.println("poll: NTP message : " + msg.toString());
					serviceStatus = 1;
					
					return System.currentTimeMillis() - NtpMessage.timestampToTime(msg.receiveTimestamp);
					
				}
				catch (InterruptedIOException ex) {
					// Ignore, no response received.  
				}
			}
		}
		catch (NoRouteToHostException e) {
			System.out.println("No route to host exception for address: " + ipv4Addr);
		}
		catch (ConnectException e) {
			// Connection refused. Continue to retry.  
			e.fillInStackTrace();
			System.out.println("Connection exception for address: " + ipv4Addr);
		}
		catch (IOException ex) {
			ex.fillInStackTrace();
			System.out.println("IOException while polling address: " + ipv4Addr);
		}
		finally {
			if (socket != null)
				socket.close();
		}
		
		// Store response time if available  
		//  
		if (serviceStatus == 1) {
			System.out.println("responsetime==" + responseTime);
		}
		return 0;
	}
	
}

class NtpMessage {
	
	/** */
	/** 
	 * This is a two-bit code warning of an impending leap second to be 
	 * inserted/deleted in the last minute of the current day. It''s values may 
	 * be as follows: 
	 *  
	 * Value Meaning ----- ------- 0 no warning 1 last minute has 61 seconds 2 
	 * last minute has 59 seconds) 3 alarm condition (clock not synchronized) 
	 */
	public byte leapIndicator = 0;
	
	/** */
	/** 
	 * This value indicates the NTP/SNTP version number. The version number is 3 
	 * for Version 3 (IPv4 only) and 4 for Version 4 (IPv4, IPv6 and OSI). If 
	 * necessary to distinguish between IPv4, IPv6 and OSI, the encapsulating 
	 * context must be inspected. 
	 */
	public byte version = 3;
	
	/** */
	/** 
	 * This value indicates the mode, with values defined as follows: 
	 *  
	 * Mode Meaning ---- ------- 0 reserved 1 symmetric active 2 symmetric 
	 * passive 3 client 4 server 5 broadcast 6 reserved for NTP control message 
	 * 7 reserved for private use 
	 *  
	 * In unicast and anycast modes, the client sets this field to 3 (client) in 
	 * the request and the server sets it to 4 (server) in the reply. In 
	 * multicast mode, the server sets this field to 5 (broadcast). 
	 */
	public byte mode = 0;
	
	/** */
	/** 
	 * This value indicates the stratum level of the local clock, with values 
	 * defined as follows: 
	 *  
	 * Stratum Meaning ---------------------------------------------- 0 
	 * unspecified or unavailable 1 primary reference (e.g., radio clock) 2-15 
	 * secondary reference (via NTP or SNTP) 16-255 reserved 
	 */
	public short stratum = 0;
	
	/** */
	/** 
	 * This value indicates the maximum interval between successive messages, in 
	 * seconds to the nearest power of two. The values that can appear in this 
	 * field presently range from 4 (16 s) to 14 (16284 s); however, most 
	 * applications use only the sub-range 6 (64 s) to 10 (1024 s). 
	 */
	public byte pollInterval = 0;
	
	/** */
	/** 
	 * This value indicates the precision of the local clock, in seconds to the 
	 * nearest power of two. The values that normally appear in this field range 
	 * from -6 for mains-frequency clocks to -20 for microsecond clocks found in 
	 * some workstations. 
	 */
	public byte precision = 0;
	
	/** */
	/** 
	 * This value indicates the total roundtrip delay to the primary reference 
	 * source, in seconds. Note that this variable can take on both positive and 
	 * negative values, depending on the relative time and frequency offsets. 
	 * The values that normally appear in this field range from negative values 
	 * of a few milliseconds to positive values of several hundred milliseconds. 
	 */
	public double rootDelay = 0;
	
	/** */
	/** 
	 * This value indicates the nominal error relative to the primary reference 
	 * source, in seconds. The values that normally appear in this field range 
	 * from 0 to several hundred milliseconds. 
	 */
	public double rootDispersion = 0;
	
	/** */
	/** 
	 * This is a 4-byte array identifying the particular reference source. In 
	 * the case of NTP Version 3 or Version 4 stratum-0 (unspecified) or 
	 * stratum-1 (primary) servers, this is a four-character ASCII string, left 
	 * justified and zero padded to 32 bits. In NTP Version 3 secondary servers, 
	 * this is the 32-bit IPv4 address of the reference source. In NTP Version 4 
	 * secondary servers, this is the low order 32 bits of the latest transmit 
	 * timestamp of the reference source. NTP primary (stratum 1) servers should 
	 * set this field to a code identifying the external reference source 
	 * according to the following list. If the external reference is one of 
	 * those listed, the associated code should be used. Codes for sources not 
	 * listed can be contrived as appropriate. 
	 *  
	 * Code External Reference Source ---- ------------------------- LOCL 
	 * uncalibrated local clock used as a primary reference for a subnet without 
	 * external means of synchronization PPS atomic clock or other 
	 * pulse-per-second source individually calibrated to national standards 
	 * ACTS NIST dialup modem service USNO USNO modem service PTB PTB (Germany) 
	 * modem service TDF Allouis (France) Radio 164 kHz DCF Mainflingen 
	 * (Germany) Radio 77.5 kHz MSF Rugby (UK) Radio 60 kHz WWV Ft. Collins (US) 
	 * Radio 2.5, 5, 10, 15, 20 MHz WWVB Boulder (US) Radio 60 kHz WWVH Kaui 
	 * Hawaii (US) Radio 2.5, 5, 10, 15 MHz CHU Ottawa (Canada) Radio 3330, 
	 * 7335, 14670 kHz LORC LORAN-C radionavigation system OMEG OMEGA 
	 * radionavigation system GPS Global Positioning Service GOES Geostationary 
	 * Orbit Environment Satellite 
	 */
	public byte[] referenceIdentifier = { 0, 0, 0, 0 };
	
	/** */
	/** 
	 * This is the time at which the local clock was last set or corrected, in 
	 * seconds since 00:00 1-Jan-1900. 
	 */
	public double referenceTimestamp = 0;
	
	/** */
	/** 
	 * This is the time at which the request departed the client for the server, 
	 * in seconds since 00:00 1-Jan-1900. 
	 */
	public double originateTimestamp = 0;
	
	/** */
	/** 
	 * This is the time at which the request arrived at the server, in seconds 
	 * since 00:00 1-Jan-1900. 
	 */
	public double receiveTimestamp = 0;
	
	/** */
	/** 
	 * This is the time at which the reply departed the server for the client, 
	 * in seconds since 00:00 1-Jan-1900. 
	 */
	public double transmitTimestamp = 0;
	
	/** */
	/** 
	 * Constructs a new NtpMessage from an array of bytes. 
	 */
	public NtpMessage(byte[] array) {
		// See the packet format diagram in RFC 2030 for details  
		leapIndicator = (byte) ((array[0] >> 6) & 0x3);
		version = (byte) ((array[0] >> 3) & 0x7);
		mode = (byte) (array[0] & 0x7);
		stratum = unsignedByteToShort(array[1]);
		pollInterval = array[2];
		precision = array[3];
		
		rootDelay = (array[4] * 256.0) + unsignedByteToShort(array[5]) + (unsignedByteToShort(array[6]) / 256.0) + (unsignedByteToShort(array[7]) / 65536.0);
		
		rootDispersion = (unsignedByteToShort(array[8]) * 256.0) + unsignedByteToShort(array[9]) + (unsignedByteToShort(array[10]) / 256.0) + (unsignedByteToShort(array[11]) / 65536.0);
		
		referenceIdentifier[0] = array[12];
		referenceIdentifier[1] = array[13];
		referenceIdentifier[2] = array[14];
		referenceIdentifier[3] = array[15];
		
		referenceTimestamp = decodeTimestamp(array, 16);
		originateTimestamp = decodeTimestamp(array, 24);
		receiveTimestamp = decodeTimestamp(array, 32);
		transmitTimestamp = decodeTimestamp(array, 40);
	}
	
	/** */
	/** 
	 * Constructs a new NtpMessage 
	 */
	public NtpMessage(byte leapIndicator, byte version, byte mode, short stratum, byte pollInterval, byte precision, double rootDelay, double rootDispersion, byte[] referenceIdentifier,
			double referenceTimestamp, double originateTimestamp, double receiveTimestamp, double transmitTimestamp) {
		// ToDo: Validity checking  
		this.leapIndicator = leapIndicator;
		this.version = version;
		this.mode = mode;
		this.stratum = stratum;
		this.pollInterval = pollInterval;
		this.precision = precision;
		this.rootDelay = rootDelay;
		this.rootDispersion = rootDispersion;
		this.referenceIdentifier = referenceIdentifier;
		this.referenceTimestamp = referenceTimestamp;
		this.originateTimestamp = originateTimestamp;
		this.receiveTimestamp = receiveTimestamp;
		this.transmitTimestamp = transmitTimestamp;
	}
	
	/** */
	/** 
	 * Constructs a new NtpMessage in client -> server mode, and sets the 
	 * transmit timestamp to the current time. 
	 */
	public NtpMessage() {
		// Note that all the other member variables are already set with  
		// appropriate default values.  
		this.mode = 3;
		this.transmitTimestamp = (System.currentTimeMillis() / 1000.0) + 2208988800.0;
	}
	
	/** */
	/** 
	 * This method constructs the data bytes of a raw NTP packet. 
	 */
	public byte[] toByteArray() {
		// All bytes are automatically set to 0  
		byte[] p = new byte[48];
		
		p[0] = (byte) (leapIndicator << 6 | version << 3 | mode);
		p[1] = (byte) stratum;
		p[2] = (byte) pollInterval;
		p[3] = (byte) precision;
		
		// root delay is a signed 16.16-bit FP, in Java an int is 32-bits  
		int l = (int) (rootDelay * 65536.0);
		p[4] = (byte) ((l >> 24) & 0xFF);
		p[5] = (byte) ((l >> 16) & 0xFF);
		p[6] = (byte) ((l >> 8) & 0xFF);
		p[7] = (byte) (l & 0xFF);
		
		// root dispersion is an unsigned 16.16-bit FP, in Java there are no  
		// unsigned primitive types, so we use a long which is 64-bits  
		long ul = (long) (rootDispersion * 65536.0);
		p[8] = (byte) ((ul >> 24) & 0xFF);
		p[9] = (byte) ((ul >> 16) & 0xFF);
		p[10] = (byte) ((ul >> 8) & 0xFF);
		p[11] = (byte) (ul & 0xFF);
		
		p[12] = referenceIdentifier[0];
		p[13] = referenceIdentifier[1];
		p[14] = referenceIdentifier[2];
		p[15] = referenceIdentifier[3];
		
		encodeTimestamp(p, 16, referenceTimestamp);
		encodeTimestamp(p, 24, originateTimestamp);
		encodeTimestamp(p, 32, receiveTimestamp);
		encodeTimestamp(p, 40, transmitTimestamp);
		
		return p;
	}
	
	/** */
	/** 
	 * Returns a string representation of a NtpMessage 
	 */
	public String toString() {
		String precisionStr = new DecimalFormat("0.#E0").format(Math.pow(2, precision));
		return "Leap indicator: " + leapIndicator + " " + "Version: " + version + " " + "Mode: " + mode + " " + "Stratum: " + stratum + " " + "Poll: " + pollInterval + " " + "Precision: " + precision
				+ " (" + precisionStr + " seconds) " + "Root delay: " + new DecimalFormat("0.00").format(rootDelay * 1000) + " ms " + "Root dispersion: "
				+ new DecimalFormat("0.00").format(rootDispersion * 1000) + " ms " + "Reference identifier: " + referenceIdentifierToString(referenceIdentifier, stratum, version) + " "
				+ "Reference timestamp: " + timestampToString(referenceTimestamp) + " " + "Originate timestamp: " + timestampToString(originateTimestamp) + " " + "Receive timestamp:   "
				+ timestampToString(receiveTimestamp) + " " + "Transmit timestamp: " + timestampToString(transmitTimestamp);
	}
	
	/** */
	/** 
	 * Converts an unsigned byte to a short. By default, Java assumes that a 
	 * byte is signed. 
	 */
	public static short unsignedByteToShort(byte b) {
		if ((b & 0x80) == 0x80)
			return (short) (128 + (b & 0x7f));
		else
			return (short) b;
	}
	
	/** */
	/** 
	 * Will read 8 bytes of a message beginning at <code>pointer</code> and 
	 * return it as a double, according to the NTP 64-bit timestamp format. 
	 */
	public static double decodeTimestamp(byte[] array, int pointer) {
		double r = 0.0;
		
		for (int i = 0; i < 8; i++) {
			r += unsignedByteToShort(array[pointer + i]) * Math.pow(2, (3 - i) * 8);
		}
		
		return r;
	}
	
	/** */
	/** 
	 * Encodes a timestamp in the specified position in the message 
	 */
	public static void encodeTimestamp(byte[] array, int pointer, double timestamp) {
		// Converts a double into a 64-bit fixed point  
		for (int i = 0; i < 8; i++) {
			// 2^24, 2^16, 2^8, .. 2^-32  
			double base = Math.pow(2, (3 - i) * 8);
			
			// Capture byte value  
			array[pointer + i] = (byte) (timestamp / base);
			
			// Subtract captured value from remaining total  
			timestamp = timestamp - (double) (unsignedByteToShort(array[pointer + i]) * base);
		}
		
		// From RFC 2030: It is advisable to fill the non-significant  
		// low order bits of the timestamp with a random, unbiased  
		// bitstring, both to avoid systematic roundoff errors and as  
		// a means of loop detection and replay detection.  
		array[7] = (byte) (Math.random() * 255.0);
	}
	
	public static long timestampToTime(double timestamp) {
		if (timestamp == 0)
			return 0;
		
		// timestamp is relative to 1900, utc is used by Java and is relative  
		// to 1970  
		double utc = timestamp - (2208988800.0);
		
		// milliseconds  
		long ms = (long) (utc * 1000.0);
		
		return ms;
	}
	
	/** */
	/** 
	 * Returns a timestamp (number of seconds since 00:00 1-Jan-1900) as a 
	 * formatted date/time string. 
	 */
	public static String timestampToString(double timestamp) {
		if (timestamp == 0)
			return "0";
		
		// timestamp is relative to 1900, utc is used by Java and is relative  
		// to 1970  
		double utc = timestamp - (2208988800.0);
		
		// milliseconds  
		long ms = (long) (utc * 1000.0);
		
		// date/time  
		String date = new SimpleDateFormat("dd-MMM-yyyy HH:mm:ss").format(new Date(ms));
		
		// fraction  
		double fraction = timestamp - ((long) timestamp);
		String fractionSting = new DecimalFormat(".000000").format(fraction);
		
		return date + fractionSting;
	}
	
	/** */
	/** 
	 * Returns a string representation of a reference identifier according to 
	 * the rules set out in RFC 2030. 
	 */
	public static String referenceIdentifierToString(byte[] ref, short stratum, byte version) {
		// From the RFC 2030:  
		// In the case of NTP Version 3 or Version 4 stratum-0 (unspecified)  
		// or stratum-1 (primary) servers, this is a four-character ASCII  
		// string, left justified and zero padded to 32 bits.  
		if (stratum == 0 || stratum == 1) {
			return new String(ref);
		}
		
		// In NTP Version 3 secondary servers, this is the 32-bit IPv4  
		// address of the reference source.  
		else if (version == 3) {
			return unsignedByteToShort(ref[0]) + "." + unsignedByteToShort(ref[1]) + "." + unsignedByteToShort(ref[2]) + "." + unsignedByteToShort(ref[3]);
		}
		
		// In NTP Version 4 secondary servers, this is the low order 32 bits  
		// of the latest transmit timestamp of the reference source.  
		else if (version == 4) {
			return "" + ((unsignedByteToShort(ref[0]) / 256.0) + (unsignedByteToShort(ref[1]) / 65536.0) + (unsignedByteToShort(ref[2]) / 16777216.0) + (unsignedByteToShort(ref[3]) / 4294967296.0));
		}
		return "";
	}
}

另外,也记录一下OSS修改的部分,免得下次在用到时还要满世界找..

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.aliyun.oss.internal;

import static com.aliyun.oss.common.utils.CodingUtils.assertParameterInRange;
import static com.aliyun.oss.internal.OSSConstants.DEFAULT_FILE_SIZE_LIMIT;
import static com.aliyun.oss.internal.OSSUtils.determineFinalEndpoint;
import static com.aliyun.oss.internal.OSSUtils.determineResourcePath;

import java.io.InputStream;
import java.net.URI;
import java.util.Collections;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;

import com.aliyun.oss.ClientConfiguration;
import com.aliyun.oss.HttpMethod;
import com.aliyun.oss.InternetDateFactory;
import com.aliyun.oss.common.comm.RequestMessage;
import com.aliyun.oss.common.comm.ServiceClient;
import com.aliyun.oss.common.comm.io.FixedLengthInputStream;
import com.aliyun.oss.common.utils.DateUtil;
import com.aliyun.oss.model.WebServiceRequest;

/*
 * HTTP request message builder.
 */
public class OSSRequestMessageBuilder {
	
	private URI endpoint;
	
	private HttpMethod method = HttpMethod.GET;
	
	private String bucket;
	
	private String key;
	
	private Map<String, String> headers = new HashMap<String, String>();
	
	private Map<String, String> parameters = new LinkedHashMap<String, String>();
	
	private InputStream inputStream;
	
	private long inputSize = 0;
	
	private ServiceClient innerClient;
	
	private boolean useChunkEncoding = false;
	
	private WebServiceRequest originalRequest;
	
	public OSSRequestMessageBuilder(ServiceClient innerClient) {
		this.innerClient = innerClient;
	}
	
	public URI getEndpoint() {
		return endpoint;
	}
	
	public OSSRequestMessageBuilder setEndpoint(URI endpoint) {
		this.endpoint = endpoint;
		return this;
	}
	
	public HttpMethod getMethod() {
		return method;
	}
	
	public OSSRequestMessageBuilder setMethod(HttpMethod method) {
		this.method = method;
		return this;
	}
	
	public String getBucket() {
		return bucket;
	}
	
	public OSSRequestMessageBuilder setBucket(String bucket) {
		this.bucket = bucket;
		return this;
	}
	
	public String getKey() {
		return key;
	}
	
	public OSSRequestMessageBuilder setKey(String key) {
		this.key = key;
		return this;
	}
	
	public Map<String, String> getHeaders() {
		return Collections.unmodifiableMap(headers);
	}
	
	public OSSRequestMessageBuilder setHeaders(Map<String, String> headers) {
		this.headers = headers;
		return this;
	}
	
	public OSSRequestMessageBuilder addHeader(String key, String value) {
		headers.put(key, value);
		return this;
	}
	
	public Map<String, String> getParameters() {
		return Collections.unmodifiableMap(parameters);
	}
	
	public OSSRequestMessageBuilder setParameters(Map<String, String> parameters) {
		this.parameters = parameters;
		return this;
	}
	
	public OSSRequestMessageBuilder addParameter(String key, String value) {
		parameters.put(key, value);
		return this;
	}
	
	public InputStream getInputStream() {
		return inputStream;
	}
	
	public OSSRequestMessageBuilder setInputStream(InputStream instream) {
		this.inputStream = instream;
		return this;
	}
	
	public OSSRequestMessageBuilder setInputStreamWithLength(FixedLengthInputStream instream) {
		assertParameterInRange(inputSize, -1, DEFAULT_FILE_SIZE_LIMIT);
		this.inputStream = instream;
		this.inputSize = instream.getLength();
		return this;
	}
	
	public long getInputSize() {
		return inputSize;
	}
	
	public OSSRequestMessageBuilder setInputSize(long inputSize) {
		assertParameterInRange(inputSize, -1, DEFAULT_FILE_SIZE_LIMIT);
		this.inputSize = inputSize;
		return this;
	}
	
	public boolean isUseChunkEncoding() {
		return useChunkEncoding;
	}
	
	public OSSRequestMessageBuilder setUseChunkEncoding(boolean useChunkEncoding) {
		this.useChunkEncoding = useChunkEncoding;
		return this;
	}
	
	public OSSRequestMessageBuilder setOriginalRequest(WebServiceRequest originalRequest) {
		this.originalRequest = originalRequest;
		return this;
	}
	
	public RequestMessage build() {
		Map<String, String> sentHeaders = new HashMap<String, String>(this.headers);
		
		/**
		 * 改动 - 郭胜凯 - 2017-08-16 17:59
		 * 这里是取系统时间,当系统时间与阿里云不一致时,则会抛出时间异常,无法完成OSS操作。
		 * 为了方便测试,这里将时间改为从网络获取,不从系统获取,以此骗过OSS的时间校验机制。
		 * 但有可能出现后续问题,在进入生产环境之前,必须更正过来。
		 */
		
		//------------------------------修改前/start----------------------------------
		//sentHeaders.put(OSSHeaders.DATE, DateUtil.formatRfc822Date(new Date()));  
		//------------------------------修改前/end------------------------------------
		
		//------------------------------修改后/start----------------------------------
		sentHeaders.put(OSSHeaders.DATE, DateUtil.formatRfc822Date(InternetDateFactory.getRealDate()));
		//------------------------------修改后/end------------------------------------
		
		Map<String, String> sentParameters = new LinkedHashMap<String, String>(this.parameters);
		
		RequestMessage request = new RequestMessage(this.originalRequest);
		ClientConfiguration clientCofig = this.innerClient.getClientConfiguration();
		request.setEndpoint(determineFinalEndpoint(this.endpoint, this.bucket, clientCofig));
		request.setResourcePath(determineResourcePath(this.bucket, this.key, clientCofig.isSLDEnabled()));
		request.setHeaders(sentHeaders);
		request.setParameters(sentParameters);
		request.setMethod(this.method);
		request.setContent(this.inputStream);
		request.setContentLength(this.inputSize);
		request.setUseChunkEncoding(this.inputSize == -1 ? true : this.useChunkEncoding);
		
		return request;
	}
	
}

参考文章:http://lshh83.iteye.com/blog/546405

点赞
  1. earrings说道:

    This post is truly a nice one it helps new
    net visitors, who are wishing for blogging.

发表评论

电子邮件地址不会被公开。 必填项已用*标注